Five challenges faced by Time Sensitive Networking in supporting the IIoT

This article highlights the contribution Time Sensitive Networking makes towards providing deterministic performance over Ethernet.


Based on information from Analog Devices                        Download PDF version of this article


The ongoing development of Time Sensitive Networking (TSN) has resulted in significant updates to both the IEEE 802.1 and 802.3 standards. Essentially a set of deterministic Ethernet extensions, TSN is also the successor to Audio Video Bridging (AVB), the IEEE project initially designed to support real-time media streaming within professional audio and video environments (such as live DJ sets). Once AVB caught the attention of automakers, though, the seeds for TSN were sown. The cars of tomorrow have long been envisioned as sophisticated vehicles, equipped with high-speed IP network connectivity, intelligent and automated driver assistance/braking systems, infotainment portals, simplified internal wiring harnesses and lighter overall weights. The drive toward these features has yielded many auxiliary benefits to the industrial automation industry, too.

Creating a converged IEEE 802 specification, using Ethernet, was the most obvious solution to the problems standing in the way of such a vision. More specifically, the automotive sector could use deterministic Ethernet to overcome limited in-vehicle bandwidth and eliminate the need to resort to a gaggle of legacy networking protocols – e.g. FlexRay, LIN and MOST – to link various car systems together. Remove the in-vehicle part of that sentence, along with the references to the automotive-specific protocols, and you get a close approximation of the five challenges that the automation industry has faced as the Industrial Internet of Things (or Industry 4.0) continues to come into focus.

Supporting mixed traffic. Ethernet has been put forward as a one-size-fits-all automotive network that can streamline the different domain architectures inside cars. Via TSN, it can fulfill a similar role in industrial networks by handling mixed traffic in automation and control systems, power utilities, wind turbines and printing (see reference 1 below). TSN should excel at transporting time-stamped, latency-sensitive data regardless of any best-effort traffic that may be present on the same network. This is essential with Ethernet, which is much "noisier" than previous automation networks that carried only real-time data and not a diverse mix of protocols. TSN is designed to handle multiple traffic types.

Providing interoperability. In the IIoT in particular, the use of standard components manufactured in large volume is essential. This is due to central issues of scale and cost that weigh down many current approaches to networking. Relying on special ASIC-based industrial Ethernet implementations and/or legacy fieldbuses (including but not limited to the ones used in cars, such as CAN) is less scalable or cost-effective than simply leaning on commercial silicon that can still support regular HTTP interfaces, Web services and diagnostics (reference 2). TSN helps keep costs down and a path open for future expansion.

Ensuring tight synchronization. AVB evolved into TSN in order to handle particularly demanding applications such as the Advanced Driver Assistance System (reference 3). ADAS requires multiple systems to work seamlessly in concert to account for braking distances and human reaction times. TSN includes several mechanisms for ensuring such determinism across similar settings such as the IIoT, namely: improvements to the Precision Time Protocol, redundant path availability for any data stream, convergence of Quality of Service onto the TSN over an Ethernet network at reduced bandwidth (without compromising real-time guarantees, though), and bandwidth reservation – a central feature carried over from AVB for ensuring deterministic performance.

Supplying sufficient bandwidth. One of the decisive advantages of Ethernet over legacy serial fieldbuses – i.e. everything from PROFIBUS to Modbus – is that it can provide much more bandwidth to applications of all types. In automobiles in particular, the limited data rates and capacity of CAN made it insufficient for the next generation of in-vehicle applications, which opened the doors for Ethernet (in the form of AVB). Applications like machine vision and 3D scanning require a lot of bandwidth. The same can be said for many of the fieldbuses still in use in control systems. Increasingly important applications such as machine vision and 3D scanning require a lot of bandwidth; TSN over Ethernet can provide it.

Making network infrastructure simpler. TSN is meant to be a consolidated and easy-to-use approach to deterministic Ethernet networking. Rather than having to rely on multiple infrastructures to handle different types of traffic, everything can be carried over Ethernet. A 2015 podcast hosted by David Greenfield of Automation World, while it did not bring up TSN specifically, did a good job of outlining general advantages of Ethernet over fieldbuses (reference 4). Guest Sari Germanos of the Ethernet POWERLINK Standardization Group talked about how complex applications (like the ones mentioned) strain the limits of legacy network architectures. Ethernet, in the form of TSN, is already addressing this problem in cars. A recent EE Times article provided a look at how the domain architectures in a vehicle could be rearranged if legacy technologies did not have to be supported. Ethernet would serve as a backbone bus to connect the various application domains, making better use of bandwidth. It can do the same for the IIoT (reference 5). “As [industrial] IoT adoption continues, increased amounts of data and widely distributed networks will require new standards for sharing and transferring critical information," explained Todd Walter of National Instruments, AVnu Alliance Industrial Segment Chair, in a Design World article (reference 6). "Just as an ambulance or fire engine receives priority among other traffic during an emergency, the TSN standard ensures that critical, time-sensitive data are delivered on time over standard network infrastructure."

TSN moves beyond being just an idealistic project and instead becomes a widely used standard that is certified by industry groups. The points outlined already show it already has a strong technical base. The next thing to watch is how its testing and deployment play out. In late February 2016, Bosch Rexroth, Schneider Electric, National Instruments and Kuka announced their joint work on the first TSN testbed in the world (reference 7). This testbed is designed to combine various traffic flows over a TSN over Ethernet network. It will test the multi-vendor interoperability of TSN, as well as its security features, performance, latency and integration with cloud-based control systems.

National Instruments is hosting the testbed. One of its executives, Eric Starkloff, commented that TSN is "necessary for the future of the IIoT," highlighting how far a converged deterministic form of Ethernet has come from its roots in pro A/V technology. The scope of the IIoT could prove to be enormous, but many enterprises still have a way to go in terms of understanding and harnessing its benefits. A mature and widely adopted TSN will help them get there.

Perfect Motion Control For the Networked World

We live in a physical world where everything is connected. Trinamic transforms digital information into physical motion with accessible, flexible, and easy to use toolkits putting the world’s be...


New High-Performance Serial NAND: A Better High-Density Storage Option for Automotive Display

The automotive requirements: speed, reliability and compatibility. Winbond's high-performance serial NAND Flash technology offers both cost and performance advantages over the SPI NOR Flash typica...


President Tung-Yi talks about Winbond

Winbond is a leading specialty memory solution provider with a wide rage of product portfolio. Owned technology and innovation are our assets for our industry and our customers. Winbond we are high qu...


New Memory and Security Technologies for Designers of IoT Devices

Internet of Things (IoT) edge nodes are battery-powered, often portable, and are connected to an internet gateway or access point wirelessly. This means that the most important constraints on new I...


Winbond TrustMe Secure Flash - A Robust and Certifiable Secure Storage Solution

Winbond has introduced the TrustMe secure flash products to address the challenge of combining security with advanced process nodes and remove the barriers for adding secure non-volatile storage to pr...


Ultra-Low-Power DRAM: A “Green” Memory in IoT Devices

Winbond is offering a new way to extend the power savings available from Partial Array Self-Refresh (PASR), which was already specified in the JEDEC standard by implementing a new Deep Self-Refresh (D...


Polytronics Thermal Conductive Board (TCB) at Electronica 2018

This video introduce the basic product structure, advantage, and application of Polytronics thermal conductive board (TCB). Polytronics exhibit wide range of circuit protection products and thermal ma...


Arrow and Analog Devices strategic partnership and collaborative approach to provide solutions for our customers.

Mike Britchfield (VP for EMEA Sales) talks about why Analog Devices have a collaborative approach with Arrow Arrow’s design resources are key, from regional FAEs in the field to online des...


WE MAKE IT YOURS! Garz & Fricke to present the latest HMIs and SBCs at Electronica 2018

Sascha Ulrich, Head of Sales at Garz & Fricke, gives you a quick overview about the latest SBC, HMI and Panel-PC Highlights at electronica 2018. Learn more about the SANTOKA 15.6 Outdoor HMI, the ...


Macronix Innovations at electronica 2018

Macronix exhibited at electronica 2018 to showcase its latest innovations: 3D NAND, ArmorFlash secure memory, Ultra Low Vcc memory, and the NVM solutions with supreme quality mainly focusing on Automo...


ams CEO talks about their sensor solutions that define the mega trends of the future

In this video Alexander Everke, ams’ CEO, talks to Alix Paultre of EETimes about their optical, imaging and audio sensor solutions in fast-growing markets – from smartphones, mobile device...


Intel accelerated IoT Solutions by Arrow

Arrow is showing Intel’s Market Ready Solutions in a Retailer shop with complete eco environment. From sensors via gateways into the cloud, combined with data analytics, the full range of Intel ...


CSTAR - Manufacturers of cable assembly from Taiwan

CSTAR was founded in 2010 in Taipei, Taiwan. Through years of experience, we are experts in automotive products, LCD displays, LCD TVs, POS, computers, projectors, laptops, digital cameras, medical ca...


NXP Announces LPC5500 MCU Series

Check this video to discover the new NXP microcontroller LPC5500, the target application and focus area. Links to more information: LPC5500 Series: World’s First Arm® Cortex® -M...


Molex Meets Solutions at Electronica

These are exciting times in the electronics world as Molex migrates from a pure connectors company to an innovate solutions provider. Solutions often start at the component level, such as the connecto...


Alix Paultre investigates Bulgin's new optical fiber rugged connector range at Electronica 2018

Alix Paultre interviews Bulgin's Engineering Team Leader Christian Taylor to find out more about the company's new range of optical fiber connectors for harsh environments. As the smallest rug...


Cypress MCU and Connectivity are the best choice for real-world IoT solutions.

Cypress’ VP of Applications, Alan Hawse, explains why people should use Cypress for their IoT connectivity and MCU needs. Cypress wireless connectivity and MCU solutions work robustly and sea...


Chant Sincere unveils their latest High Speed/High Frequency connection solutions at Electronica 2018

Chant Sincere has been creating various of product families to provide comprehensive connection solutions to customers. USB Series Fakra Series QSFP Series Metric Connector Series Fibro ...


Addressing the energy challenge of IoT to unleash billions of devices

ON Semiconductor introduces various IoT use cases targeted towards smart homes/buildings, smart cities, industrial automation and medical applications on node-to-cloud platforms featuring ultra-low po...


ITECH, world leading manufacturer of power test instruments, shinned on electronica 2018

ITECH, as the leading power electronic instruments manufacturer, attended this show and brought abundant test solutions, such as automotive electronics, battery test, solar array simulator, and electr...


ITECH new series give users a fantastic user experience

ITECH latest series products have a first look at the electronics 2018, such as IT6000B regenerative power system, IT6000C bi-directional programmable DC power supply, IT6000D high power programmable ...


SOTB™ Process Technology - Energy Harvesting in Embedded Systems is Now a Reality

Exclusive SOTB technology from Renesas breaks the previous trade-off between achieving either low active current or low standby current consumption – previously you could only choose one. With S...


Power Integrations unveils their new motor control solution

In this video friend of the show Andy Smith of Power Integrations talks to Alix Paultre from Aspencore Media about their new BridgeSwitch ICs, which feature high- and low-side advanced FREDFETs (Fast ...


Panasonic talks about their automotive technology demonstrator

In this video Marco from Panasonic walks Alix Paultre of Aspencore Media through their automotive technology demonstrator at electronica 2018. The demonstrator highlights various vehicle subsystems an...