Maxim: low-power MCUs extend battery life for wearables and other compact devices

Designers of IoT sensors, environmental sensors, smartwatches, medical/preventive health wearables, and other size-constrained devices can now increase battery life and functionality using the ultra-low power MAX32660 and MAX32652 microcontrollers from Maxim Integrated Products.

These microcontrollers are based on the Arm Cortex-M4 with FPU processor and provide designers the means to develop advanced applications under restrictive power constraints. Maxim's family of DARWIN MCUs combine our wearable-grade power technology with the biggest embedded memories in their class and some of the most advanced embedded security in the world.

Memory, size, power consumption, and processing power are critical features for engineers designing more complex algorithms for smarter IoT applications. Existing solutions today offer two extremes - they either have decent power consumption but limited processing and memory capabilities, or they have higher power consumption with more powerful processors and more memory. The MAX32660 offers designers a sweet spot, giving them access to enough memory to run some advanced algorithms and manage sensors (256KB flash and 96KB SRAM). They also offer excellent power performance (down to 50 µW/MHz), impressively small size (1.6mm x 1.6mm in WLP package), and a cost-effective price point. Engineers can now build more intelligent sensors and systems that are smaller and lower in cost, while also providing a longer battery life.

As IoT devices become more intelligent, they start requiring more memory and additional embedded processors which can each be very expensive and power hungry. The MAX32652 offers an alternative for designers who can benefit from the low power consumption of an embedded microcontroller with the capabilities of a higher powered applications processor. With 3MB flash and 1MB SRAM integrated on-chip and running up to 120 MHz, the MAX32652 offers a highly-integrated solution for IoT devices that strive to do more processing and provide more intelligence. Integrated high-speed peripherals such as high-speed USB 2.0, secure digital (SD) card controller, a TFT display controller, and a complete security engine position the MAX32652 as the low-power brain for advanced IoT devices. With the added capability to run from external memories over HyperBus or XcellaBus, the MAX32652 can be designed to do even more tomorrow, providing designers a future-proof memory architecture and anticipating the increasing demands of smart devices.


Dirk Giesen describes the Parasoft tool suite for Embedded Software Development

Are you responsible for embedded software development in your organization? Your goal should be to create safe, secure, and reliable software. To make sure your device will work properly, deploy Paras...


Ross Sabolik of Silicon Labs talks about advanced Power over Ethernet

In this video Ross Sabolik of Silicon Labs talks about smart  Power over Ethernet systems with Alix Paultre at their APEC exhibit in San ANtonio, Texas. As PoE migrates to higher power levels and...


Dialog Semi walks through their latest IC solutions for battery chargers

In this video an engineer from Dialog Semiconductor walks us through their latest ICs for battery chargers at APEC 2018. Dialog's Qualcomm Quick Charge adapter solutions offer high efficiency to e...


Steve Allen of pSemi explains their latest LED driver solution

Steve Allen of pSemi explains their latest LED boost product based on Arctic Sand's two-stage architecture. Their PE23300 has a charge-pump, switched-capacitor architecture that offloads most of t...


Teledyne describes their latest 12-bit Wavepro HD oscilloscope

In this video Teledyne LeCroy describes their latest Wavepro HD oscilloscope to Alix Paultre of Power Electronics News at the company's launch event. The WavePro HD high-definition oscilloscope de...


Dialog Semi walks through their latest IC solutions for battery chargers

In this video an engineer from Dialog Semiconductor walks us through their latest ICs for battery chargers at APEC 2018. Dialog's Qualcomm Quick Charge adapter solutions offer high efficiency to e...


ROHM explains their latest wireless battery charger solution kit

In this video an engineer from ROHM goes over their latest wireless power development kit, co-developed with Würth for embedded development. The kit provides a complete wireless power transfer sy...


Tektronix describes their latest mixed-signal oscilloscope

In this video Tektronix explains the features in their latest 5 Series MSO Mixed Signal Oscilloscope. Features include an innovative pinch-swipe-zoom touchscreen user interface, a large high-definitio...


AVX shows a supercapacitor demonstrator at APEC

In this video Eric from AVX explains their supercapacitor demonstrator box at APEC 2018 in San Antonio, Texas. The box shows how a 5V 2.5-farad supercapacitor can quickly charge up using harvested ene...


OnSemi explains their latest passive smart wireless sensor for industrial applications

In this video On Semiconductor explains their latest wireless sensor for hazardous environments at APEC in San Antonio, Texas. Intended for applications like high-voltage power cabinets and other plac...


TI demonstrates an improved gaming power system at Embedded World

In this video Texas Instruments' explains Significant reduction in ripple, which results in improved reliability and increased design margins, among other advantages. Another benefit that improve...


Infineon explains their latest motor drive technology at APEC 2018

In this video Infineon demonstrates new gate drivers using their LS-SOI technology at APEC 2018. In the demo Victorus, an Infineon application engineer, shows in real time how much better thermal the ...


STMicro goes over their latest wireless-enabled microcontroller for the IoT

In this video STMicroelectronics goes over their latest wireless-enabled STM32WB microcontroller for the IoT and intelligent devices in several live connectivity demonstrations at Embedded World 2018....